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Abstract 

The tetrahedron equation and the four-simpler. equation are multidimen- 

sional generalizations of the Yang-Baxter or triangle equations. We discuss 

common features of these members of the family of “simplex-equations.” Zamc+ 

lodchikov solution of the tetrahedron equation is rewritten in an algebraic form 

and a generalization of it to the four-simplex case is proposed. Relevance of 

the simplex equation for the understanding of multidimensional integrability is 

briefly discussed. 
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1. It is well known that the concept of quantum and classical integrability in 

one- and two-dimensional systems is intimately linked to the notion of triangle or 

Yang-Baxter equations[I-41. They emerged on the one hand as the conditions for 

the commutation of transfer matrices in statistical mechanical spin systems[5,6], and 

on the other hand, as the consistency condition of facto&ability for the S-matrix in 

two-dimensional quantum field theory[‘l]. Thus, the triangle equations 

S Ic* k2 (0) s j1 les (0 + 0') s j2 j3 (/I') = 
i, iz kl is h ks 

= S 
h k3 (e,) s h 5 

(e + 0') s j1 j2 (8) 
il is h ks h h 

t.11 

is the compatibility condition for the factorization of the three-partide S-matrix 

in terms of the two-particle scattering amplitudes, (9,0’,8 + 8’, are the difference 

of rapidity between the three incident particles and the indices is *. ., stand for the 

internal quantum numbers of the particles, (o = 1, *. . , N) pictorially depicted in fig. 

1. In eq. (l), we have taken into account the constraint on the, in general, three 

parameters Or, Os,8s entering the equation, coming from the well-known relation of 

the three angles of a triangle in a plane. 

Nowadays, there exists a great deal of insight into the algebraic structure of the 

Yang-Baxter equations(?], as well as an almost exhaustive classification of solutions 

within the context of simple Lie algebras at the classical level[?] and to some extent 

also at the quantum level[?]. 

An equivalent way of writing eq. (1) is in terms of Boltzmann weights w(a]b,c(d), 

depending on the values of spins around a plaquette on a square two dimensional 

lattice denoted here by a, b, c, d which may take values +, or, more generally, any 
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integer number. In terms of these objects, the Yang-Baxter equation read [?I: 

Tw(alb~, bzlc) w’(b&,bW) w”(clh,a’IbiJ 

= ~w”(b~ja,b;Ic) w’(a/bl,clbk) w(clb;,bi/a’) (4 

The sum being performed over an internal spin value c. Eq. (2) which is also referred 

to as generalized star-triangle relation, implying the commutation of transfer matrices 

for the associated Lattice spin model, is pictorially given in fig. 2. The prime attached 

to the w in eq. (2) stands for different values of internal continuous parameters. 

A multidimensional generalization of the triangle equations was proposed in 1980 

by Zamolodchikov, who wrote down the conditions for the facto&ability of the scat- 

tering amplitudes of straight strings in a plane[]. He also proposed, what is up to now, 

the one and only non-trivial solution of these equstions[]. We shall not write down 

here the original Zamolodchikov’s equations because he used a rather complicated 

representation. A more convenient representation is obtained by generalizing eq. (2), 

cf.[], in terms of Boltsmann weights which no longer live on faces of a two-dimensional 

square lattice, but on cubes of a three-dimensional cubic lattice, depending hence on 

eight spins values, i.e., w(alefglbcdlh). I n erms of this description, Baxter was able to t 

prove that Zamolodchikov proposal indeed solves the so-called tetrahedron equation, 

which we now state in full: 

Cw(al~blb3lsctc,ld).w’(b~lc~c~c~lb~b~dla’) 
d 

.W”(clldb~b:Ic:a’csIb~).w”‘(dlczc3a’lbjb:blIE:) 

= ~w”(c~lb&~b~Ic~cjaId).w”(b31clacjIdb~bl~c~) 
d 

.w’(alb,b~dlc~c~c~lbj).w(dlc~c~cjlb~b~b~Ia’) (*3) 
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The sum being performed over a central spin value d. The eq. (3) which describes 

the conditions for commutativity of the layer-to-layer transfer matrices of a three- 

dimensional lattice model is given pictorially in fig, 3. Again, the primes attached 

to the w in eq. (3) denote the dependence on (continuous) parameters, on which we 

will comment below. 

Note that the tetrahedron equations are invariant under a multiplication of us by: 

in which y(alb,cld) = y(alc, bid) = y(dlb,cla) = y(cla,dlb), is independent of the 

parameters. 

2. In [] it was argued that both the triangle equations as well as the tetrahedron 

equations are part of a larger family of equations corresponding to increasing dimen- 

sionalitics, the so-called d-simplex equations. We give here the first member of this 

family (summation over repeated indices is understood): 

d = 1 : A;.& = B+ A’ ,. k (.4) 

(commutativity equation) 

kl h jl h 
.Cj’ ‘= 

ka k3 h h il j2 
d=2: A .B =c .B .A 

i, ia k, i3 k2 k3 il i3 kt h 

(.5) 

(Yang-Baxter equation) 
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k, ka kz 
d=3: A 

. B 5 h ks . c ja A ke . D j3 js j6 = 

il i2 is kl id is kl h ie k3 ks ke 

h ks ks 
.C 

kl k4 je 
.B 

h j4 j5 = D 
is is is il i4 ke il h kg 

. A :’ j,’ 1: (5) 

1 1 3 

(Zamolodchikov equation) 

d=4: A 
h h ks h 

.B 
5 h h kr . c ja 5, ka b 

il i2 is i, k, is is i, k, ks is is 

D j3 je ja ho . E j4 j7 $9 ho 
=E 

h kr Icg ho 
. t-71 

k3 ke ke ko h kr lea km ir i, is il0 

D 
k3 les ka ho 

.c 
h h is je 

.B 
kl 5 je jr 

i3 is is ho ip & ke b i, ks b kr 

A 5 5 j3 j4 

kt ka k3 h 

(Bazhanov-Stroganov equation) 

It is now easy to see from eqs. (4-7) how to generalize them to an arbitrary di- 

mension d[] leading to the d-simplex equations. These equations can be consid- 

ered to be generalizations of matrix commutativity conditions for objects depending 

on multiple (Zd) indices. The (d + 1) quantities A, B, C, . . . . entering the d-simplex 

equation are assumed to be respectively equal to the different values of one object, 
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say, S 
il, ‘*” id (Dij) corresponding to (d + 1) choices of the set of parameters 

A, . . . . jd 

D;j,i,j = l,..., d. The matrix of parameters D;j is a dzd symmetric matrix that we 

construct as follows. Let us first consider a d-simplex defined in a d-dimensional 

alline euclidean space by giving (d + 1) points, pr, . . . . Pdfr which form a complete 

coordinate system for this space. The (d + 1) f aces of the d-simplex are respectively 

the (d + 1) alline hyper-planes Xj of codimension one constructed out of the d points 

P;, , k = 1, . . . . d,is # j. To each lace Hj we associate a unit vector Cj orthogonal 

to it and pointing outside the d-simplex. Now, each point Pi belongs to the d faces 

Hj,j # i. Hence. to each vertex Pi of the d-simplex we can associate the d unit 

vectors rij, j # i, and the matrix Df/ of their scalar products, i.e., Df = & . G. We 

also associate to each vertex P; the tensor S 
ir, . . . . id 

(0::) where the indices ik 
A, ’ . . . . 3d 

and jk are, for each k, respectively characterizing a line joining the point Pi to an- 

other point Pe,l # i, of the d-simplex. If now, we consider this tensor as a statistical 

weight attached to the vertex P;, we can compute the position function associated to 

the d-simplex; it is just the product of the tensors St’l,i = 1, . . ..d + 1, the sum being 

performed on the indices ik or jk attached to the internal edges of the d-simplex. 

The d-simplex equation express now that this partition function is the same for the 

d-simplex we started with (for which all the unit vectors i;j are pointing outside of it) 

and for the d-simplex obtained by a translation of the hyper-planes Hj (conserving 

their orientation) in such a way that all the proceedings ~j are now pointing inside 

the new d-simplex. The first examples of these equations for d = 1,2,3,4 are given 

in eqs. (4-7). 

Let us note that an equivalent description of the set of parameters DC) is given in 
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terms of the y relatives angles 0. between the (d + 1) unit vectors Gj* However, 

not all these angles are independent, since (d+ 1) vectors in d dimensions do not form 

a free vector system. If we write i;i.Gj = cos(r - O<j), we obtain one relation between 

these v angles, given by the vanishing of the determinant of the (d + l)z(d + 1) 

matrix Ctt, = C(*TTj. 

In the case of the tetrahedron equation (d = 3), the tensor S depends on three 

parameters, e.g., the respective angles between the three planes defining each vertex 

Pi,i = 1, . ..) 4. Hence we have: 

S 
kl h kz 

(81,82,83). s j1 k4 k5 (4, e4, w . 
il ia is kl i, i6 

s h j, k6 
(e2,er,es). s j3 j5 j6 (b, f-b, 8,) = 

kz k, ia leJ ks les 

k ks ke 
= S (e3,es,es) s k2 k4 j6 he,, 0,) 

i3 is is ia i, ke 
(4 

s kl A j5 (el,elre5). s j1 ja j3 (e1,e,,e3) 
il h ks h k2 ka 

where the six parameters Oh, k = l,..., 6 are not all independent as we have seen 

before. In fact, if COS(R - 0,) = C;,i = 1, . . . . 6, we have the relation: 

( 1 Cl Cl c4 
\ 

det 
Cl 1 c3 c5 

= 0 
Cl Q 1 cs 

c4 c5 C6 1 

t-91 

Note that the angles 0; and the angles aj between the lines in the tetrahedron of fig. 
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4 are related by spherical trigonometry[]. 

The relation between the tetrahedron equations (6,s) and the equation (3) in 

terms of Boltzmann weights is given by the following correspondence: 

w(alefglbcdlh) ++ S 
gbch, fbdh, ecdh 

aefd, aegc, afgb 

assuming that any one of the indices of S in eq. (8) correspond to a set of four spins 

on any one of the faces of the cube with which we associate the Bultzmann weight W. 

In a similar fashion aa before, the 4-simplex equation is given by eq. (7) where 

the tensors A, B, .,. are given by S 
il is i3 i, (e 

1, . . . . 0,) for various values of the 
5 h i3 j4 

angles Bk. The 4-simplex is described by the 10 relative angles between its 5 faces, 

9 of them being independent, the last one being constrained by the vanishing of the 

matrix determinant, det(O+) = 0, i, j = 1, . . . . 5. 

Again, we can associate, in a similar manner as before, with eq. (7) a representa- 

tion of the 4-simplex equation in terms of Boltsmann weights depending on spins on 

a hyper cubic 4-dimensional lattice. Let a, b,, . . . . b,, cl, . . . . csr dl, . . . . d,, e denote the 

16 spin values corresponding to the 16 vertices of an elementary hypercube of such a 

lattice (see fig. 5), then we can introduce the following correspondence: 

w (albl, . . . . b,/q, . . . . celd, ,..., dlle) H S 
il is is id 

j, j2 j3 j4 

where every index of S corresponds to a face of the hypercube, i.e., a cube with 8 

spin values that determine the respective values of the indices ik and jk,u = 1, . ...4 
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in the following way: 

in * (b~w~ce&&&e) j, * (hb&mw&) 

is * Uw~wd~dad*e) h +, (&bAsc&) 

i* ++ (b~c~sd~&&e) j, * (4bb3c~cvd) 

Using this correspondence we can write the following representation of the 4-simplex 

equation in terms of Boltzmann weights W: 

Fw 
.w’ 

.W” 

All” 

.W”” 

= ? wrar 

.W”’ 

.W” 

.W’ 

.W 

where the summation is over a center spin e, and the primes attached to the w stand 

for different values of the parameters. 
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As for the tetrahedron equation, the 4-simplex equation is invariant under the 

multiplication of w’ by the quantity: 

where y(alblb2bJlclc2c~ld) is a function, depending on the cube of spin values 

(alblblb3clc2c3d) and which is invariant by the various permutations of the spins 

values describing geometrically the same cube. In addition, it is independent of the 

parameters. 

3. We believe that the representation of the simplex equation in terms of the quan- 

tities S, such as in eq. (1) and eqs. (4-8) is the most simple one to get an insight 

into their algebraic structure and also for studying their solutions. Using now the 

correspondence between the Boltsmann weights w and the tenor S we may obtain an 

explicit form of Zamolodcbikov’s solution of the tetrahedron equations, which has the 

advantage above previous descriptions[] that it is more algebraic in nature. Zamo- 

lodchikov’s solution corresponds to the case where the spins values in eq. (3) and 

consequently the indices in eqs. (6,8)-which are the products of 4 spins values along 

a face of a cube of the 3dimensional latticttake only two values f. Furthermore, 

we impose the symmetry conditions 

(4 s il 5 j3 (e~,el, e3) = s h j3 5 h, e3, 4) WI 
ir is is i2 is ii 
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(ii) S 
jl j2 j3 (e1rel,e3) = s 21 52 E3 

wv3) (lib) 
il il is 5 j2 j3 

Then, the Zamolodchikov’s solution is given by the following choice of matrices 

with matrix elements G.5 
jl ja i3 

,za, ja = l : 
it is ia 

SZ$ = (; ;*).,_-(, 1) 

s:z = (; i3), s:$ ;JJ 

s_+_+ = (; y?sz=(;* ;) (W 

si_+ = ( i2 ;), s?;=( i3 T) 
inwhichXi = P<+Qi,yi = Pi-Qi and & are functions of the angles Blrb’sr6s. 

Inserting (12) into eq. (6) we essentially get two types of equations for these functions: 

WI 

Equations (13a, 13b) and similar equations which are obtained either by inverting all 

spin, leading to X c) Y, or by permutating the indices 1,2,3, alIow for a parametriza- 

tion in terms of functions of spherical angles, as was shown by Baxter[]. In fact, let 

Or,&, 0s be the interior angles of a spherical triangle and ass, am, ats the respective 
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. . opposite sides, then we have: 

PO z 1, Qo = tslrtsts, P; = tjtk (Cyclic) 

j&z & (cyclic) Qi = toti 

where Si = (sin 3 y)r/s,cr = (cos y)r/s, t; = (tan 1 ) r/s and 2a. = 8, + 8s + 6 + 3 - 

K, ai = as - 6i+r. Another way of writing (12) in a more algebraic and compact way, 

is in terms of a threefold tensor product of SL 1. Namely, let us define the following 

tensors: 

with the property that Ro + Rr + S& + 0s = 1 8 18 1, and where m=,rs,o. are the 

usual Pauli matrices. Then the Zamolodchikov’s solution (12) can be written as: 

S = W’m -(uz @uz@~z)f-LQ,+(ua @ua@o.)%R, (-1 

where the sum over Q = 0, 1,2,3 is understood. 

4. Rewriting Zamolodchikov’s solution of the tetrahedron equation in terms of the 

quantities S as in eq. (12) immediately suggest a possible form of the solution of the 

J-simplex equation, which should have been hard to guess from the representation 

of it in terms of Boltzmann weights as in eq. (10). In fact, let S 
JI ja A 

denote 
il i2 i3 



-12- FERMILAB-Pub-88/71-T 

jl j2 j3 j4 
( bs 

jl j2 j3 j4 

the matrices with components S , we wish to 
il ir is i* il i2 i3 i, 

suggest the following form of a possible solution of the 4-simplex equation (7): 

5. In this letter, we have tried to put forward the idea that the triangle equations and 

the tetrahedron equations are members of a hierarchy of equations, called the simplex 

equations, and that it is useful to consider these equations as such. An insight on how 

this hierarchy develops as we increase the dimensionality might lead to a systematic 

understanding of the algebraic structure of its individual members and hopefully to 

the development of solution methods. The recent interest in the theory of quantum 

groups[], which is until now linked solely to the quantum Yang-Baxter equations, 

might also gain from a broadening of horizon by taking other members of the hierarchy 

of simplex equations into consideration. Another field of application is the study of 

multidimensional integrability. It is well known that the classical and quantum Yang- 

Baxter equations are one of the fundamental building blocks in the theory of two- 

dimensional integrability[]. The development of a genuinely multidimensional notion 

of integrability is one of the major problems in the theory of integrable systems of 

these days. In a previous publication[] we have addressed ourselves more explicitly 

to these problems. The main idea is that the notion of integrability is intimately 

linked to the question of the possibility of posing an overdetermined, but solvable, 

system of equations which does not trivially reduce to a dimensionally smaller system. 

The simplex equations can be of help in the search of such systems, because these 

equations themselves can be shown to emerge as the consistency conditions of a related 

system of equations, namely those involving the permutations of transfer matrices. 

In a future publication[], we shall treat these results in more detail and show that 

by analogy with the two-dimensional case, this leads in a natural way to a notion of 
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integrability on multidimensional lattices. 
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